Stepper Motor Torque Tester

Micro Stepper Motor Tester SMT-2
Controller SMC-2
Sensor Set SS series

SUGAWARA Laboratories Inc.
Frequency-Torque Testing of Micro Stepper Motors

With the unique application of Prony (winding) braking, which is the most proven method for torque testing of small/micro stepper motors, it automatically obtains the full pull-in and pull-out torque curves with high accuracy.

Pull-in torque The maximum torque at which the motor can start from holding state without losing steps for a given speed

Pull-out torque The maximum torque at which the motor can operate without losing steps for a given speed

Advantages

Minimal moment of inertia of the tester
By adopting Prony braking, the system provides stable measurement unaffected by moment of inertia of the tester and coupling loss, which is unavoidable in conventional torque testers. The advantage is obvious especially in pull-in torque testing. For micro motors, zero inertia testing is possible by winding the brake thread directly on the shaft.

Definition-based measurement
The pull-in torque is measured exactly according to its definition: the maximum torque at which the motor can start from the holding state without losing steps. The resulting data has a high correlation with the data by traditional double balance method.

Broad measurement range
Six models of sensors, from 0.5 N to 20 N, allow wide range of high-precision measurement. By selecting Sensors and Pulleys, the system measures small/micro stepper motors of 0.1 to 400 mN m.

Easy-to-see presentation
Motor characteristics are easily seen on automatically plotted Frequency-Torque curves. Data can be overlaid on the graph up to four data sets.

Can be controlled by standard personal computers
Allows control of measurement, display, and storage of data by standard personal computers running Windows.

The Prony Brake enables torque testing of motors such as leadscrew type carriage control motors and micro stepper motors with maximum torque of 0.1 mNm in a 5 mm diameter case.
System and Method

The Brake Thread is wound on the Pulley attached to the Test Motor shaft, and its both ends are attached to the hooks of the two Sensors. When the Moving Sensor moves to tighten the Brake Thread, the torque is loaded to the Test Motor via a Pulley.

In this way the motor torque T is detected as follows;

$$T = |F_1 - F_2| \times \frac{(D_1 + D_2)}{2}$$

- T: motor torque [mNm]
- F_1: force detected by Fixed Sensor [N]
- F_2: force detected by Moving Sensor [N]
- D_1: diameter of the Pulley [mm]
- D_2: diameter of the Brake Thread [mm]

Measurement range

The torque measurement range of each Sensor is defined according to the formula below (thread diameter is ignored for convenience sake).

$$T = \text{Sensor Rating} \times \text{Pulley Diameter} / 2$$

The torque range table defined by combination of the Sensor and the Pulley is as follows;

<table>
<thead>
<tr>
<th>Sensor Model</th>
<th>Sensor Rating [N]</th>
<th>Pulley Diameter [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-RSN</td>
<td>0.5</td>
<td>5 10 20 40</td>
</tr>
<tr>
<td>SS-1N</td>
<td>1</td>
<td>5 10 20</td>
</tr>
<tr>
<td>SS-2N</td>
<td>2</td>
<td>5 10 20</td>
</tr>
<tr>
<td>SS-5N</td>
<td>5</td>
<td>10 20 40</td>
</tr>
<tr>
<td>SS-10N</td>
<td>10</td>
<td>20 40</td>
</tr>
<tr>
<td>SS-20N</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

$*: when the thread is wound directly on the motor shaft.

Specifications

- **Brake**: Prony braking
- **Sensor rating**: Six types: 0.5 N, 1 N, 2 N, 5 N, 10 N, 20 N
- **Sensor sensitivity**: DC 2 V/rating
- **Torque measurement precision**: Within ±1% of torque range
- **Maximum allowable load**: 200% of Sensor rating
- **Torque measurement range**
 - $T = \text{Sensor Rating} \times \text{Pulley Diameter} / 2$
 - (Refer to the torque measurement range table on the left.)
- **Torque analog output from SMC-2**: DC 2 V/torque rating
- **Drive frequency range**: 16 - 50,000 Hz
- **Drive signals**: Square wave (duty 1:1), TTL-level voltage signal or open-collector signal
- **Dimensions and weight**
 - **Micro Stepper Motor Tester SMT-2**: 450 (W) × 200 (H) × 370 (D) mm, Approximately 14 kg
 - **Controller SMC-2**: 430 (W) × 148 (H) × 360 (D) mm, Approximately 9 kg
 - **Sensor Set SS-*N**: 80 (W) × 122 (H) × 66 (D) mm, Approximately 0.9 kg (EA)
- **Compatible personal computer**: IBM PC/AT-compatible
- **Operating system**: Microsoft Windows®2000, XP, 7
- **Interface**: RS-232C serial port
- **Power supply**: Single-phase AC 100 - 120 V ±10%, 50/60 Hz
- **Power supply**: Single-phase AC 200 - 240 V ±10%, 50/60 Hz
- **Power consumption**: 50 VA or less
Automatic measurement

Measurement starts from the first (lowest) frequency defined on the software.

Pull-out torque
Rotating the motor at the speed of the defined frequency, the system gradually increases load until it detects step loss. The torque value immediately preceding the loss is determined to be the pull-out torque.

Pull-in torque
After measuring the pull-out torque, the system goes to the pull-in torque measurement. It reduces torque step by step to check at each step whether the motor can start from the holding state without losing steps, and according to the result, it decreases and increases the torque and checks until it finds the pull-in torque.

When finishing the pull-out and pull-in torque testing at the first frequency, it goes to the next higher frequencies one by one, to obtain the full Frequency-Torque curves of the test motor automatically.